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Majority orienting model for the oscillation of market price
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Abstract. The present paper introduces a majority orienting model in which the dealers’ behavior changes
based on the influence of the price to show the oscillation of stock price in the stock market. We show
the oscillation of the price for the model by applying the van der Pol equation which is a deterministic
approximation of our model.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management –
05.45.Tp Time series analysis – 02.50.Ey Stochastic processes

1 Introduction

The stock price is known to fluctuate in the real market
and the trajectory of the stock price is considered to be a
random walk, although the reason for the fluctuation re-
mains an open question, as pointed out in the fundamental
textbook of microeconomics [11]. It is observed that the
evolution of the price has some statistical properties or
patterns that differs from a Gaussian random walk. The
present paper introduces a new model that is composed
of three elements: mutation of dealers, majority rule and
feedback by the price, as basic elements for the change of
a stock price in a real market [3,5,9].

The proposed model can be regarded as a simplified
market in which the dealers’ behavior (position) changes
based on the influence of the price. We show herein that
in the model, the price oscillates under some condition by
applying the van der Pol equation which is a deterministic
approximation of the proposed model.

We introduce a ternary interaction model of a finite
particle, which makes excursions that are similar to the
Ising model, assuming a mutation to the other type for
each particle [6,12]. Using the Ising model the analysis of
the market has been discussed [1,13], and modeling the
financial market by some form of Ising structure of the
interactions of agents has been achieved in several stud-
ies [3,5]. Based on the Ising model, spontaneous magne-
tization can only occur in the thermodynamic limit. In
a finite lattice, the system makes excursions from states
with a uniformly negative magnetization through this in-
termediate mixed-phase state to states with a uniformly
positive magnetization [2].

a e-mail: hisanao@ism.ac.jp
b e-mail: itoh@ism.ac.jp; Also at The Graduate University

for Advanced Studies

2 Model

Consider an urn model [4]. Assume that there are two
boxes, the plus box (+) and the minus box (−) and the
number of particles contained in each box is N+ and N−
respectively. The total number of the particles is N =
N++N−, and every particle is numbered from 1 to N . The
following step, composed of three substeps i), ii) and iii),
is successively applied to particles in the two boxes.

i). Mutation: One particle out of N particles is chosen at
random and it moves from its box into the other box
with probability r and does not move with probabil-
ity 1 − r, (0 ≤ r ≤ 1).

ii). Majority rule: We take three particles at random in
each step. If two of the particles taken are in the plus
box and one is in the minus box, the one in the mi-
nus box is moved to the plus box and the price S is
increased by 1, while, if two of the particles are in the
minus box and one is in the plus box, the one in the
plus box is moved to the minus box and the price S is
decreased by 1. If the three particles taken are in the
plus box, no change occurs for the particles and the
price S is increased by 3, while, if the three particles
taken are in the minus box, no change occurs for the
particles and the price S is decreased by 3.

iii). Feed back: We change the number of particles in the
plus box N+ (this may be equally applied to the minus
box N−), with the probability which is proportional
to the price S. That is, if S is a positive number, N+

is decreased by 1 with probability S/N , while, if S is
negative, N+ is increased by 1 with probability −S/N .
The absolute value of S can be larger than N when r is
large, but we only discuss in the case of |S| ≤ N in this
paper. This condition is almost valid when r ≥ 0.65.
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Let each particle in the plus box represent a buy-
position dealer, and each particle in the minus box repre-
sent a sell-position dealer. Substep i) models the position
of each dealer changing randomly in a real market and
corresponds to mutation in population genetics. This pro-
cess may represent the random fluctuation (noise) in a real
market. Substep ii) models the change of the position of
a dealer from sell to buy or from buy to sell after consid-
ering the behaviour of the other dealers [12]. This process
represents the majority orienting behaviour or herding be-
haviour of dealers in the real market. This ternary inter-
action is one of the simplest interactions that we could
think of for this type of urn model. Substep iii) models
the change of dealers’ position under the influence of the
price on the market. If the price goes up, the buy-position
dealers usually change their position to sell, whereas if the
price goes down, the sell-position dealers may change their
position to buy.

The ternary interaction in our model gives a linear
term as we will show later (in Eq. (2)), which gives the
van der Pol equation when combined with equation (1).

3 Van der Pol equation

Let us represent N+ and S at step s as N+(s) and S(s)
respectively. Assuming that the duration of a step is τ ,
and the values of N+(s), N−(s) and S(s) are given, we
have the following expected values:

E
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τ N

]
= r
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N
+
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N

}

+ 3
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,

where λ is a parameter which we introduce for convenience
in the analysis of the proposed model.

For sufficiently small τ and large N , approximating

N+(s) − N/2
N

by x(t) and
S(s)
N

by y(t),

we have the following system of ordinary differential equa-
tions as a deterministic approximation:

d

dt
x = −2 r x + 6 x

(
1
2

+ x

) (
1
2
− x

)
− λ y (1)

Fig. 1. Trajectories of the price y(t) and the position x(t).
(a) r = 0.65, (b) r = 0.70, (c) r = 0.75, and (d) r = 1.0. With
the initial condition that x(0) = 0.1 and y(0) = 0.
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where −1/2 ≤ x ≤ 1/2.
In Figure 1, we show the trajectories of the above equa-

tions under the initial conditions

x(0) = 0.1 and y(0) = 0.

The time interval of this simulation is 0.017. From these
figures, we find that when the mutation rate r is small,
the price and the position are oscillating, while, when the
mutation rate r is large, these damp to zero. When r is
too small, the trajectory goes to |x| > 1/2.
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Fig. 2. Trajectories of the number of particles in plus
box N+(s) and the price S(s) for N = 1000. (a) r = 0.65,
(b) r = 0.70, (c) r = 0.75, and (d) r = 1.0.

The following van der Pol equation [7,10] is obtained
from equations (1) and (2):

d2

dt2
x − 6

(
3 − 4 r

12
− 3 x2

)
d

dt
x + 6 λx = 0, (3)

when r < 3/4 (� 0.75). The limit cycle was shown in
Figure 1 of the simulation.

4 Simulation

In Figure 2, we show the trajectories with four different
parameters r: (a) r = 0.65, (b) r = 0.70, (c) r = 0.75,
and (d) r = 1.0. The number of particles N = 1000. The

Fig. 3. Histograms of the trajectories in Figure 2. When N =
1000. (a) r = 0.65. (b) r = 0.70. (c) r = 0.75. (d) r = 1.0.

number of particles in the plus box N+(0) = 600, and the
price number S(0) = 0. The Mersenne Twister [8] was
used to generate random numbers.

We find from Figure 2 that when r < 3/4 (= 0.75),
there is a limit cycle, as is known for the van der Pol
equation. When r > 3/4, the price tends to zero, which
is realized from equations (1, 2) and (3). Considering the
physical interpretation in this case, equation (3) has no
energy supplying term but diffusion or friction terms, so
that the system loses its energy, and the position of traders
and the price tend to zero. These results are consistent
with the results from Figure 1.

Looking carefully at Figure 2d, we observe a periodic
pattern with oscillation. This is because N+ drifts away
from N/2 in proportion to s due to the Brownian motion
caused by the random fluctuations, and gradually S will
become bigger, then N+−N/2 goes to zero following from
equation (3), and these processes continue.
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Figure 3 shows the histograms for the number of vis-
its for each value of the trajectory in Figure 2, where each
histogram is a result of two hundred thousand steps. How-
ever, we show only twenty thousand steps in the trajec-
tory. We find that when r < 3/4, the shape is bimodal,
which reflects the limit cycle of the van der Pol equation,
and when r > 3/4, the shape is unimodal.

5 Concluding remarks

Our majority orienting model with the feed back by the
price gives the van der Pol equation which has been well
discussed in the field of nonlinear oscillations and seems
to give a simple explanation for the oscillation of the stock
price.

In our proposed model, the fundamental value of the
price is known and fixed at S = 0, while in a real market,
the fundamental price is not known and it is said that it
may change. Considering these facts, the oscillatory pat-
tern may be a trajectory around the moving average in a
sense of a “chartist”.

The authors would like to thank the referees for their helpful
comments.
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